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Obtaining Cubatures for Rectangles and Other Planar 
Regions by Using Orthogonal Polynomials* 

By Richard Franke 

Abstract. A. H. Stroud has recently shown the existence of cubature formulas for planar 
regions which use m2 points and have polynomial precision 2m - 1. In this paper, the 
author gives sufficient conditions for the existence of formulas using fewer than m2 points, 
and having polynomial precision 2m - 1. An algorithm is given for computing such for- 
mulas, and is shown to be useful in a more general setting than given in the theorem. Numer- 
ical examples are given, both in terms of previously known and new cubature formulas. 

1. Introduction. A number of authors have attempted to use the common zeros 
of orthogonal polynomials in two variables as evaluation points in cubature formulas 
for regions in the plane. A theorem given recently by Stroud [10] shows how to con- 
struct formulas using orthogonal polynomials of degree m if they have exactly m2 
distinct common zeros. These formulas approximate the integrals of polynomials of 
degree ? 2m - 1 exactly. The principal result of this paper is to give sufficient con- 
ditions for the existence of similar formulas which use fewer than m2 points. 

The following notation and definitions will be used in this paper. 

R2 A region in the plane. 
w A weight function defined, and nonnegative, on R2 such that the integrals 

f Rs wxa/Y exist for all a, A > 0. 
Pd, Pd,t Polynomials of degree d. 
Qd, Qd i Polynomials of degree ? d. 
ka ' The orthogonal polynomials of the form xa/y + Qm-i(X, y). 
Sd, 2 A subset of pairs of nonnegative integers; {(a, ,B): a + ,B < d, a,a O}. 
SN A subset of Sd,2 containing N elements. 
(x,, yi) A common zero of two polynomials. 
X(SN) The matrix having rows (x yo, x a * , x0y ), where (a, j3) E SN, and 

the (xi, yi) are specified. 
i(f=) f -R, Wf. 

The cubature formulas we obtain will have the form 

N 

(1) I(f) - EI Akf(uk). 
k-1 
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We say that Pd is an orthogonal polynomial, with respect to a given region R. and 
weight function w, if I(PdQd,-) = 0 for all Qd_l- A cubature formula is said to have 
precision d if the approximation (1) is exact for all Qd and is not exact for all Pd+.. A 
formula is said to befully symmetric if the appearance of a point (a, b) in the formula 
implies the appearance of the points (=ia, -b), (4b, =a) with the same weight. The 
set of points {(4a, -b), (kb, ia)} will be denoted by (a, b)FS. 

2. Preliminary Discussion. The following theorem was given by Stroud [10]. 
THEOREM 1. Assume Pm,1 and P,,, are two polynomials in two variables with the 

following properties: 
(i) Each Pm. is orthogonal to all Qm.l; and 

(ii) Pm., and Pm., have exactly m2 common zeros, Vk, k = 1, * *, mi, all of which 
are distinct and none of which are at infinity. 

Then there exist constants Ak such that 

(2) I(Q2m--l) ~2 AkQ2mnl(Vk) 
b-1 

for al Q2.- I 

Numerous examples of this theorem can be given, including both previously 
known and new formulas. The cross product formulas for rectangles are a special case. 
Some particularly interesting examples are those which effectively use fewer than m2 
points by virtue of the fact that one or more of the weights are zero. The goal of this 
investigation is to give conditions ensuring the existence of formulas using fewer 
than M2 points. These formulas do not always occur as a consequence of zero weights 
appearing in Theorem 1, however. 

The weights of the cubature formula (2) can be found by solving the linear system 
of equations obtained by making (2) exact for some set of m2 monomials of degree 
? 2m - 1. Let Sm. be the set of pairs of integers corresponding to such a set of mono- 
mials. Then the only restriction on Sm' is that the coefficient matrix X(Sm.) be non- 
singular. There is always such an Sm3 when the hypothesis of Theorem 1 is satisfied. 

Certain information about the zeros of a polynomial in one variable will be needed. 
The following theorem may be found in Marden [7]. 

THEOREM 2. Letf(z) = ao + az + + zm I (z - z,)t'm, F(z) = (aO + eo) + 
(a, + e)z + * + zm and let O < r, <mm Iz -z,, Is = 1,. ,p,sj i k. Then 
there exists a positive number e such that if I ej i e for i = O, * , m - 1, then F(z) 
has precisely m i zeros in the circle ck with center at zk and radius rk. 

Let P(r, z) be a polynomial in ' and z. Consider P as a polynomial of degree m 
in ' with coefficients which are polynomials in z. A function r(z) such that 
P(r(z), z) 0 is called an algebraic function. Algebraic functions are discussed by 
Ahlfors [1], Bliss [3], and others. Briefly, the properties of t(z) we need are as follows. 
r(z) is an m-branched function, each branch of which is analytic at all points except a 
finite number of branch points and poles of finite order. At a branch point, r(z) is 
continuous, by Theorem 2, unless the coefficient of .m in P(r, z) vanishes, in which 
case the function has a pole at the branch point. Algebraic functions form a field, 
hence a rational function of algebraic functions is again an algebraic function. We 
especially note that the only singularities that algebraic functions can have are branch 
points which may be poles of finite order, and poles of finite order. 



CUBATURES FOR RECTANGLES AND OTHER PLANAR REGIONS 805 

For a brief discussion of the number of common zeros of two polynomials in two 
variables, and other algebraic geometry involved in Theorem 1, see Stroud [10]. 

3. The Main Result. For this section, let LI denote the Legendre polynomial of 
degree 1, with leading coefficient one. We then note that for the square whose vertices 
are (i 1, i 1), and with unit weight function, the orthogonal polynomials p(k m-k) are 
given by 

(3) ~~~~~~p (k m-k) 
(X, Y) = Li;(x)L,-k(Y) - 

Let us consider the orthogonal polynomials L3(y) and L4(x) + XL1(x)L2(y), where X 
is a parameter. One can then solve for the common zeros as functions of X, obtaining 
the points given in Table 1. One sees that for X E (- 9/5, 9/4), one can apply Theorem 
1, and obtain a cubature formula of precision 2m - 1 = 5, using those points. The 
weights of the formula are also given in Table 1. 

TABLE I 

Point Weight 

(0 -0) 
| 16(4 + 5\) || a2 9 + 5X 

9(9 + 5X) a = 15 

0) 40___ b2 9 -4X 
(+a,0) ~~~9 (940 5\) b = 15 

25 2 3 
(+, ?c) 9(9 - 4X) 

C 
5 

(0,+?C) 40(l2- X) X. 9 9 
9 (9 - 4e 1 

For X = 0, we obtain the cross product Gauss formula, which has positive weights. 
For X = 1, we obtain Radon's formula [8]. The 7 points in Radon's formula have 
positive weights. For X = -4/5, we obtain an 8-point formula, which so far as the 
author knows, was previously unknown, and which has positive weights. As X ap- 
proaches an endpoint of the interval (-9/5, 9/4), two sets of weights become un- 
bounded and common zeros coalesce. 

This type of investigation partially motivated the following theorem. 
THEOREM 3. Let R2= [a, b] X [c, dJ and w(x, y) = u(x)v(y). Then, for m 2 3, there 

exists a cubature formula of precision 2m - 1 which uses fewer than m2 points. Further- 
more, the weights are all positive. 

Proof. Let P l.(x) denote the orthogonal polynomial of degree I over [a, b] with 
respect to u(x). Let P1.2(y) denote the orthogonal polynomial of degree I over [c, d] 
with respect to v(y). We now consider the two orthogonal polynomials over Ra with 
respect to w(x, y), 
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(4) Pm,2(Y), Pm,l(X) + XPk.l(X)Pm-k,2(Y), 

where X is a parameter, 0 < k < m, and m + k is an even integer. The common zeros 
of the polynomials (4) are of the form (x;;, y,), i, j = 1, * * *, m, where the y, are 
independent of X, and the xi i are continuous functions of X, by Theorem 2. 

We first establish that there is an interval J containing the origin such that X E J 
implies the (xi j, y;) are real and distinct points. For X = 0, the (x;;, y;) are real and 
distinct by the properties of orthogonal polynomials in one variable (see Jackson [6], 
for example). That the (xi,, y;) are real and distinct in an open neighborhood of the 
origin follows from continuity of the x,; and the fact that complex x;; appear in 
conjugate pairs. Thus, as X increases, or decreases, from X = 0, one encounters a 
multiple zero before one obtains complex zeros. 

We must show that multiple zeros occur for a finite value of X, i.e., that J is not 
the entire real axis. For multiple zeros to occur, the equations in X and x, 

(5) Pm1,(X) + XPk,l(X)Pm-k,2(Y,) = 0, 

Pt,'(x) + XPb.l(X)Pm-k,2(Yi) = 0, 

must have a solution for one of the y,. By the properties of orthogonal polynomials in 
one variable, Pm- k,2(Y) $ 0 for at least one of the y,. We also know that no value of x 
is a zero of both Pk,,(x) and P, l(x). Eliminating X from the system (5), we obtain 

P"I,l(x)Pk,l(x) Pm.1(X)Pk,1(X) = 0. 

The degree of the equation is m + k - 1, an odd number. Thus, the polynomial has 
at least one real root, x*. Since one of Pk,l(x*) or Pk,,(x*) is nonzero, we can solve for 
the corresponding value of X, X* which is finite. 

In practice, one might want to find the largest interval J containing zero for which 
the common zeros of (4) are real and distinct. We need only be concerned here that 
such an interval exists, and that it is not the entire real line. 

Let J denote the largest interval (it is clearly open) such that X E J implies the 
polynomials (4) have real and distinct common zeros. We note that, for any finite value 
of X, the common zeros are finite. By Theorem 1, there is a cubature formula of pre- 
cision 2m - 1 which uses the points (xi i, yi) as evaluation points. 

We now prove a lemma which will allow us to explicitly state the form of the 
weights in the formula as functions of the xi ;, and thus as functions of X. 

LEMMA 4. Let S., = {(a., ,8): 0 :-5 a, ,8 < m} and let (x i, ,y,), i, j = 1, *- * , m, be 
the common zeros of (4), corresponding to X E J. Then X(Sm.) is nonsingular. 

Proof. Suppose there exists a X E J such that X(S"m) is singular. This is equivalent 
to the existence of a nontrivial polynomial Q2m.2(X, Y) = aa ,) S| a(a.XaY 
which vanishes at every point (xii, y,). Thus, for every j, Q2m.2(X, y;) is zero at xi, 
i = 1, * * *, m. Since those xi i are distinct and Q2m-2(X, y) has degree <m - 1 in x, 
we have Q2m.2(X, y,j) 0 for j = 1, m.., n. But the coefficient of each power of x in 
Q2m-2 has degree n m- 1 in y. Thus Q2m 2(X, y) 0, a contradiction. 0 

On the basis of Lemma 4, we may solve the weights, Ai 1(X), by making the approxi- 
mation exact for monomials corresponding to elements of Sm. Thus, we are spared 
any difficulties which could arise from having to change that set in the interval J. 

We note that each Ai (X) can be expressed as a rational function of the x,;(X). 
Since each xi i is an algebraic function of X. so is Ai . 



CUBATURES FOR RECTANGLES AND OTHER PLANAR REGIONS 807 

The proof now breaks into two cases: case (i) for some X E J, one or more of the 
A,i(X) = 0; case (ii) for all X E J, A,i(X) 0 0, i, j = 1, * * *, m. Assume case (i) is 
encountered. Let X* E- J be the smallest number in absolute value such that one or 
more A,i(X*) = 0. For X E (all*j, 1*j) al A,i(X) > 0, by the continuity of the 
A/i. ThusA i..(*) 2 0 for all i,j = 1, *,m and by choice of X*, at least one A i(X*) 
is zero. Thus the resulting cubature formula effectively uses fewer than m2 points. 

Now assume that case (ii) is encountered. We first note that for X E J, Ai i > 0, 
for i, j = 1, * I, m, by continuity. Let X* E closure (J), "* E~ J, where X* is finite. 
Then for some j, i, and i', xi (X*) = x,,j (X*). We will show that lim_x*;xej A i(X) 
exists for each i, j = 1, ... , m. 

Precision for constants tells us that ET ,_ A ,i(X) = I(1), and hence each Aij (X) 
is bounded for X E J. The only singularities possessed by algebraic functions are 
poles of finite order. X = X* is a branch point of some of the xi ,(X). Since it is a pole 
of at most finite order, and since each A,i(X) is bounded as X -+ X* through values 
in J, we see that lim_X*jJ A;i(X) exists. Let AA,* = limx>+x*;xej A,i(X), and let 
x,*= xi (X*). Then we have 

(6) I(Q2m-1) = E A?jQ2mi1(XWi Yi) 
i,j-1 

for all Q2m 1, since (6) is obtained by taking the limit on the right side of 

I(Q2.m-,) = E A;i(X)Q2m-1(X;i(X)' Yi), i,j-1 

which holds for all Q2,..1 for all X ( J. Since some of the (x,;, y,) coincide, (6) 
effectively uses fewer than m2 points. Since Aii(X) > 0 for all X E J, A,* 2 0, for 
i,j= 1,* ,m. 0 

4. Numerical Examples. The proof of Theorem 3 indicates an algorithm for 
computing formulas using fewer than m2 points. Starting with the cross product 
(X = 0), one can easily compute the common zeros of the polynomials (4), then the 
weights, as X varies. For large values of m, the method may break down numerically 
since the matrix X(Sm.) is ill conditioned. One can observe the behavior of the weights 
to determine whether case (i) or case (ii) applies. This procedure was used in the 
numerical examples which follow. 

In the tables in this paper, the notation (- 1)0.123 ... means 0.123 ... X 10'. 
All calculations were done in double precision on the Univac 1108 at the University of 
Utah. The calculations were verified by checking the error in the approximation for 
those monomials which were to be approximated exactly. The errors were sufficiently 
small that the rounded values given in the tables should be accurate to the given 
number of digits. 

Example 1. We consider the square with vertices at (L 1, 4 1) and weight function 
w(x, y) = 1. Letting LI denote the Legendre polynomial of degree I with leading 
coefficient one, we consider the common zeros of 

L4(Y), L4(x) + XL2(x)L2(y). 

It is found that case (ii) applies, with 
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( 27 (3(30)1/2 + 5), (3(30)1/ - 5)) 

Two 14-point formulas of precision 2m - I = 7 are obtained, corresponding to the 
endpoints of J. The approximate values of the points and weights are given in Table 2. 
Note that one formula has four points outside of the square. 

TABLE 2 

x __ Weight 

+(1)0.10578 40123 71275 + a (-1)0.43784 15208 72291 

+0.77459 66692 41483 + b 0.36230 28638 12526 

+0.46925 35221 27911 + a 0.30407 06930 50225 

0.00000 00000 00000 + b 0.57968 45821 00041 

27 
(3 3+ 5) 490(3/5 

+0.77459 66692 41483 + a 0.19325 26917 43030 

+0.91506 05233 80880 + b 0.16904 99212 19002 

0.00000 00000 00000 + a 0.30920 43067 88848 

+0.39619 10397 48320 + b 0.48309 52336 43544 

x = 
7 (3 3 5) 

a2 = 15 +352 , a =' 0.86113 63115 94053 

b b2= 52 b - 0.33998 10435 84856 
35 

Example 2. Let R2 and w be the same as Example 1. Consider the common 
zeros of 

L5(y), L5(x) + XL1(x)L4(y). 

It is found that case (i) applies, and again two formulas with fewer than M2 = 25 
points are obtained which have positive weights. These formulas are given in Table 3. 
A third formula is given; although it has a negative weight at the origin, it is interesting 
because it uses fewer points than either of the other two. 

We also note that not all formulas obtained in case (i) have positive weights, 
which emphasizes the procedure used in the proof to assure positive weights. 

The formulas have precision 9. 
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TABLE 3 

x y Weight 

+0.84592 77997 71709 + a (-1)0.70506 51405 64012 

+0.62890 16367 32253 + a (-1)0.72112 15110 07611 

+0.95968 14212 14621 + b (-1)0.97149 27360 37507 

+0.43603 05962 73468 + b 0.36854 90486 77049 

+0.77459 66692 41483 0.0 0.31604 93827 16049 

0.00000 00000 00000 + a 0.18861 64397 98053 

0.00000 00000 00000 + b (-1)0.25860 69643 71341 

0.00000 00000 00000 0.0 0.50567 90123 45679 

X = 0.80000 00000 00000; 23 points 

+0.94581 37395 19925 + a (-1)0.49929 06230 65150 

+0.46534 66248 36203 + a 0.15844 51822 84802 

+0.80425 39257 42002 + b 0.18338 37881 51247 

+0.68138 58921 63677 + b (-1)0.88147 65236 65422 

+0.96301 84090 85396 0.0 0.11445 63755 61331 

+0.42861 01432 23121 0.0 0.45443 25133 27558 

0.00000 00000 00000 + a (-1)0.57105 28092 97435 

0.00000 00000 00000 + b 0.41419 44599 63155 

X - 0.79012 34567 90123; 24 points 

+0.94930 73500 01342 + a (-1)0.49452 20191 30682 

+0.45817 75489 31134 + a 0.16391 47318 81061 

+0.77459 66692 41483 + b 0.26590 48169 44092 

+0.96777 69089 76724 0.0 0.11304 18390 46410 

+0.41775 46715 02987 0.0 0.47992 22296 00720 

0.00000 00000 00000 + a (-1)0.47119 90252 41204 

0.00000 00000 00000 + b 0.42544 77071 10548 

0.00000 00000 00000 0.0 -(-1)0.48150 35951 64821 

X - 0.87082 50331 67594; 21 points 

2 5 2 ' 
a =-5+ 63 /"7 a =-0.90617 98459 38664 

2 5 293101 05 b - -6 b ~0.53846 93101 05683 
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Example 3. Let RX = [0, co) X [-1, 1] and w(x, y) = e'/(l - y2)112. This example 
was chosen to illustrate the theorem for a nontrivial weight function on a nonsym- 
metric region. Let ?, denote the Laguerre polynomial of degree I with leading coef- 
ficient one, and T, the Chebyshev polynomial of degree I with leading coefficient one. 
We consider the common zeros of 

T4(Y), ?C4(X) + ?J32(X)T2(Y). 

During the computations investigating the behavior of the weights, it was first thought 
that case (ii) applied. However, closer numerical investigation revealed that case (i) 

(0,1) 

o 0 0 0 
5 6 V7 8 

o 0 0 0 
V1 V2 3 V4 

(0, 0) 
(5,0) (10,0) 

General location of common zeros, X > 0 

1.0 

.8 A3 x 1000 

.6 A x 30 
3 

.4 

1 

.26 

0 5 10 15 20 25 30 

x 
Fiomn 1 
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applied. Because of the unexpected behavior of the weights, their values as functions 
of X are shown in Figure 1. One of the two formulas is given in Table 4, and cor- 
responds to X* = (2)0.25455 84412 27157. The second is obtained by interchanging 
a and b in the evaluation points, and corresponds to X X*. The formulas use 14 
points and have precision 7. 

TABLE 4 

x y Weight 

0.11303 28614 59250 + a 0.29900 62097 72373 

(1)0.12290 70412 16527 + a 0.43310 01383 75078 

(1)0.40847 50367 25518 + a (-1)0.53044 24891 47755 

(2)0.10573 14635 91203 + a (-3)0.24756 63352 22222 

0.41577 45567 83479 + b 0.55849 11440 03136 

(1)0.22942 80360 27904 + b 0.21874 73164 18902 

(1)0.62899 45082 93747 + b (-2)0.81597 02975 41073 

a2 2 = / a - 0.38268 34323 65090 

4 
b2 = 4 X b - 0.92387 95325 11287 l 

5. Generalizations. We note that in the proof of Theorem 3, we could just as 
well have considered the polynomials: 

Pm,i(X), Pm,2(Y) + XPk,2(Y)Pm-k,1l(X), 

with the same restrictions on k. Which of the two sets of polynomials to be considered 
in practice might depend on the desire to preserve some symmetry. 

Let us consider two situations which might lend themselves to a treatment similar 
to the proof of Theorem 3. 

(SI) Suppose we have under consideration the square [-a, a] X [-a, a] with 
weight function w(x, y) = u(x)u(y), where u(-x) = u(x). Since the region and weight 
function are fully symmetric, it would be desirable to obtain a fully symmetric formula 
of precision 2m - 1 which uses fewer than m2 points. Accordingly, if PI is orthogonal 
to all Q_- on [-a, a] with respect to u, we could consider the orthogonal polynomials 

(7) PJ(X) + XPk(X)Pm-k(Y), PJ(Y) + XPk(Y)Pmsik(X), 

where m + k is even. The zeros are fully symmetric, and if they are distinct and 
finite, the cubature formula obtained by Theorem 1 is also fully symmetric, since it is 
unique. 

(S2) Suppose R 2 is not a rectangle, and/or w(x, y) is not a product of functions x 
and y, respectively. However, suppose that there are orthogonal polynomials Pm ,(x, y) 
and Pm,2(X, y) which satisfy the hypothesis of Theorem 1. Further, suppose the 
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common zeros are real, and the weights of the associated cubature formula are all 
positive. One could then consider the polynomials 

(8) Pm ,l(X, Y) + XPm,3(X, Y), Pm 2 (X, Y) 

or the polynomials 

(9) Pm,l(X, Y) + XPm,8(X, y), Pm,2(X, Y) + XPm,4(X, y), 

where Pm,3 and Pm,4 may or may not be the same orthogonal polynomial, and neither 
is equal to Pm,1 or Pm,2. 

The question in both situations is the same. By varying X, can one obtain a cubature 
formula of precision 2m - 1 which uses fewer than m2 points, either through zero 
weights or coalescence of common zeros? A completely satisfying answer is unknown 
at this time. We will discuss each situation in turn, the first being the simpler. We note 
that in either case, complex zeros appear in conjugate pairs, since 

Qd(X, Y) = Qd(gx ). 

Let X* be a point where the common zeros of (7) are distinct. According to van der 
Waerden [13], the Jacobian is nonzero at each common zero. Hence, one can apply 
the Implicit Function Theorem (see Bochner and Martin [4]) and conclude that the 
common zeros are analytic functions of X in a neighborhood of X*. 

Assume that the leading coefficients of the P1 are all one. Then, a common zero 
at infinity would have to satisfy the following: 

Xm + k yt-k = X (X + Xy m) = O, 

Yin + Xyk Xmk y k(ym-b + xXm) = O, 

and we see that this would require X2 = 1. Thus, for X = L 1, the polynomials (7) 
have common zeros on the line at infinity. Let J denote the largest interval containing 
the origin such that X E J implies the polynomials (7) have m2 real, distinct, and 
finite common zeros. Unless case (i) is obtained (zero weights), it would be necessary 
that J be properly contained in (-1, 1). If that were the case, we would also need 
the common zeros to be continuous functions of X at the point X* where some of the 
common zeros coalesce. The analogue of Theorem 2 for common zeros of two poly- 
nomials in two variables was not found in the literature. Forsythe [5, p. 212] proves a 
partial analogue of Theorem 2, where only the constant coefficients are allowed to 
vary. It is expected that the full analogue is true, but at the present we must make that 
assumption. We would also need to know that the limits of the weights as X --*, 
x E J, exist; 

In the second instance, one can tell nothing about the behavior of the common 
zeros of the polynomials (8) or (9) as functions of X. Again, they are analytic in the 
neighborhood of any value of X which yields m2 distinct common zeros. Let J be 
defined as before, and assume continuity at a point where common zeros coalesce. 
Assume case (i) does not apply or we are finished. If case (ii) applies, we need J to be a 
proper subset of the real line; we need the common zeros of (8) or (9) to be uniformly 
bounded in a subinterval J' of J having a finite endpoint X*, which is also an endpoint 
of J. Again the limits of the weights X -- X*, X E J, would have to exist to obtain the 
desired result. 

We see that the first situation is contained in the second, although more can be 
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determined in the first situation. The above ideas can be incorporated into a theorem 
which is primarily useful as a guide to computations in search of cubature rules of 
precision 2m - 1 using fewer than m2 points. 

THEOREM 5. Suppose Pm., and Pm,2 satisfy the conditions of Theorem 1 and that 
Pm,g and P., 4 are orthogonal polynomials, neither of which is the same as Pm., or Pm,2. 
Further, suppose that the common zeros of Pm,l and Pm.2 are all real and that the weights 
of the associated cubature rule are positive. Let J denote the largest interval containing 
the origin such that X C J implies the common zeros of the polynomials (8) or (9) satisfy 
the hypothesis of Theorem 1. If the weights of the cubature rule obtained by Theorem 1 
are all positive for all X E J, assume the following: 

(a) that for X* E closure (J), X* X J, the polynomials (8) or (9) have afinite number 
of common zeros, none of which are at infinity; 

(b) the common zeros are continuous functions of X at the point X = X*; and 
(c) the limits of the weights as X -- X*, X C J, exist. 

Then there exists a cubature formula of precision 2m - 1 for R2 and w which effectively 
uses fewer than m2 points, and which has positive weights. 

6. Numerical Examples. The procedure indicated by the theorem was attempted 
in a number of examples, with success in each instance. Both case (i) and case (ii) were 
encountered. Two of the examples involved numerical investigation somewhat beyond 
that indicated by the theorem. 

Example 4. Let R2= [- 1, 1] X [- 1, 1] and w(x, y) = 1. Consider the polynomials 

(10) L4(X) + XL2(x)L2(y), L4(y) + XL2(y)L2(x), 
where L, is the Legendre polynomial with leading coefficient one. The common zeros,, 
and thus the cubature formulas, are fully symmetric. 

For X E (-27/35, 189/385), the common zeros are distinct and finite; In this 
range, the weights of the corresponding cubature formulas are always positive. In the 
limit, as X -? (189/385)-, one obtains Tyler's formula [12], given in Table 5. For 
X = 189/385, the polynomials (10) have multiple zeros on the x and y axes. If one 
takes the limit as X -+ (-27/35)+, one obtains a 13-point formula due to a coalescing 
of 4 zeros into the origin. Four of the points are outside the square, as can be seen in 
Table 6. The formulas in Tables 5 and 6 have precision 7. 

TABLE 5 
(Tyler's Formula) 

Point We ight 

(r 0)Fs | 98 r2 6 
FS 405S7.. 

178981 + 2769 2 1 14 - 3 \5 83 
(s,s)FS 472230 287 

(t, t) 
178981 - 27692230 |T | t2 114 + 3\/r8 l (ttFS 472230 287 
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TABLE 6 

Point We ight 

(0,0) 392 2 3 

(a,a)FS 
16 b2 3 

(I 
FS U~225 b 7( +V ) 

| (b, C)FS | 1519 2 3 1 /T I (b.,c) FS 4050 ~~C = 7 (1 

Example 5. Let R2 1-1, 1] X [-1, 1] and w(x, y) = 1. Consider the polynomials 

(11) L4(x) + XL3(x)L2(y) + AL1(x)L4(y), L5(y) + XL3(y)L2(x) + pL1(y)L4(x). 

The formulas obtained are fully symmetric. It was found that case (i) was obtained 
for a range of values for q. 

For u- -0.53880 66531 67134, X = 0, a 21-point formula of precision 9 is 
obtained by virtue of a set of four weights (say A1) being zero. We note that this 
formula has a negative weight at the origin. Now letting ,u decrease, and finding a 
corresponding X such that A1 = 0, we eventually find that corresponding to I, 
-0.75540 45432 80930, X - 0.29165 21592 17893, the weight at the origin has in- 
creased to zero, thus yielding a 20-point formula. The formula is given in Table 7, 
and was previously given by Rabinowitz and Richter [9], who computed it by a dif- 
ferent method. 

TABLE 7 
(Rabinowitz-Richter Formula) 

Point Weight 

(a ?)FS 0.45409 03525 51545 a - 0.48888 63428 42372 

(b,O)FS (-1)0.71613 42470 98110 b - 0.98453 98119 42252 

FS (-1)0.42784 61546 67780 c - 0.93956 72874 21522 

r - 0.50737 67736 74613 

(r,s)FS | 0.21575 58036 35933 0.83671 03250 23989 

For X = 0, ,u _-0.39506 17283 95062, a 24-point formula is obtained through the 
weight at the origin being zero. By decreasing ,u and selecting X to maintain a zero 
weight at the origin, we expected that the formula of Table 7 would again be obtained. 
This was not the case. Another 20-point formula of precision 9 was found, cor- 
responding to ,u -0.72380 71335 86019, X -0.26938 24624 64281. Note that the 
values of ,u and X are near the values obtained above, however a different set of 4 
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weights are zero, which yields a formula with a different disposition of points than that 
obtained by Rabinowitz and Richter. The formula is given in Table 8. 

TABLE 8 

Point Weight 

(a,O)FS 0.45416 39606 86749 a 0.48892 68569 74369 

(bXb)FS 0.21420 03609 26862 b 0.69088 05504 86344 

C,C)FS (-1)0.42731 23186 57758 c 0.93956 52580 96838 

r - 0.91862 04410 56722 
(r, s) FS 0.14445 22232 60307 s 0.34487 20253 64404 

X -0.26938 24624 64281, 2 = -0.72380 71335 86019 

Exanple 6. Let R2 be the triangle with vertices at (0, 0), (1, 0), and (0, 1), with 
weight function w(x, y) = 1. The following orthogonal polynomials were given by 
Appell and Kamp6 de Feriet [2], and may be found in Stroud [11]. 

P4,1(X, y) = 70X4 + 140x3y + 90x2y2 + 20xy3 + y4 

- 140x3 - 180X2y - 60xy2 - 4Y3 

+ 9Ox2 + 60xy + 6y2 - 20x - 4y + 1, 

P42 (xI y) = 35x4 + 160x3y + 180x2y2 + 64xy3 + 5y4 

- 80x3 - 240x2y - 144xy2 - 16Y 

+ 60x2 + 96xy + 18y2 - 16x - 8y + 1, 
P4,3(x, y) = 15x4 + 120x3y + 216x2y2 + 120xy3 + 15y4 

- 40x3 - 216x2y - 216xy2 - 40y3 

+ 36X2 + 108xy + 36y2 - 12x - 12y + 1, 

P4,4(x, y) = P4.2(y, x), 

P4,5(x, y) = P4,1(y, x). 

We consider the common zeros of two polynomials of the form 

P4,8(X, Y) = rP4,1(X, Y) + XP4,2(X, Y) + AP4,3(X, y) + 'yP4,4(x, y), 

(12) P4,7(X, y) = 7P4,5(x, y) + XP4,4(x, y) + yIP4,3(x, y) + -yP4,2(X, Y) 

= P4,8(y, x) 

in an attempt to find a formula of precision 7 which uses fewer than 16 points. The 
form of the polynomials (12) was chosen to obtain a formula with the same symmetry 
as the region, i.e., if (a, b) ? R2, then (b, a) C R2, and if (a, b) is a common zero of 
(12), so is (b, a). Including P4, 5(x, y) in the first and P4,,(x, y) in the second polynomial 
leads to no more generality than the above. 
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We found that the common zeros of (12) for r = 1, X = = -y = 0 are all real, 
distinct, and inside the triangle. However, the cubature rule obtained by using these 
points has two negative weights. By decreasing X, decreasing p, or increasing y, while 
maintaining r = 1, and the other two of X, p, and y at zero, it was found that the two 
negative weights increased, and became zero for some value of each of the three 
parameters. Thus, three different 14-point rules can be obtained in this manner, each 
of which has positive weights and one of which has all its points interior to the tri- 
angle. The latter formula is given in Table 9. Using the same procedure as in Example 
5, an attempt was made to obtain a formula using fewer than 14 points. One approach 
which was used, but without success, was to start with the formula given in Table 9, 
change X slightly, and obtain a new 14-point formula by proper choice of j,. Because 
this is simply a trial and error method, a complete investigation was impractical. 
However, it appeared that one of two things would happen: (1) a common zero would 
tend to infinity; or (2) a common zero would coalesce with the common zero which had 
a zero weight. Thus, the effort failed to improve on the results indicated by Theorem 5. 

The same procedure was tried, starting with a 14-point formula occurring for 
X = -0.08, ,u (-2)0.71524 25347 51567. This formula is given in Table 10. While 
the disposition of the points is similar to that of Table 9, the zero weight occurs for a 
"different" point, as determined by its position relative to the other points. The points 
in the formula are interior to the triangle, although the two common zeros with zero 
weights are outside the triangle. Again no formula with fewer than 14 points was 
obtained, for the same reasons as in the other attempt. 

A very large number of 16-point formulas were computed for various values of X, ,, 

TABLE 9 

Point Weight 

(a 1, 1) (-1) 0.26332 15013 60460 a1'~ (-1)0.64634 10980 16171 

(a2,a2) (-1)0.66675 06099 02085 a2 a 0.25047 87642 60821 

(a3,a3) (-1)0.59839 84722 97514 a3 = 0.40528 81131 34598 

(a4,a4) (-1)0.30224 43080 27287 a = 0.48342 85070 60240 

(b1,c1) (-1)0.38713 91024 62897 b1 = (-1)0.49024 15490 57468 

(cl,b1) c1 = 0.31241 81290 02285 

(b2,c2) (-1)0.22310 31308 16147 b2 = (-1)0.27265 49172 25016 

(c 2 ,b2) C2 
= 0.64982 99188 30148 

(b3,c3) (-2)0.93095 64046 94027 b3 (-2)0.74809 20050 42521 

(c3,b3) c3= 0.92292 92246 98637 

(b4,c4) (-1)0.36538 29270 09296 b4 016671 86876 51425 
(c4, b4) C4 0.77579 68804 94268 

(b5, c5) (-1)0.51592 17534 48585 b5 
= 015196 95753 82297 

(c5 ,b5) c5 = 0.56910 13418 00312 

T = 1, X - -(-1)0.44573 47683 19604, ? = y = 0 
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TABLE 10 

Point Weght 

(a1,al) (-1)0.26081 61608 68233 a,= (-1)0.64321 15701 15959 

(a2,a2) (-1)0.66360 23579 26664 a2 0.25299 83313 85515 

(a3,a3) (-1)0.56173 11713 92644 a3 0.40974 73142 94030 

(a4,a4) (-1)0.23952 62212 75731 a4'- 0.48546 22879 28209 

(bl, c1) bl - (-1)0.50408 59335 70127 
(b1cl 

) 
(-1)0.39457 61269 86614 0.31055 48435 59296 

(c1$b 1) 0315485596 

(b2,c2) b2 (-1)0.27912 25784 37840 

(c2,b2) (-1)0.23550 12185 40342 c 0.64767 37979 23676 

(b3, c3) b3 (-1)0.36407 93788 27516 

(c3,b3) (-1)016265 44769 3625=9 c3 0.89578 58440 39319 

(b ,c4) b 0.20234 89156 94331 
(b4,c4) (-1)0.31823 23669 04684 452526 60890 
(c4,b 4) 4 0.74337526609 

(b5, c ) b5 b 0.16004 02557 10345 
I 5 C5) (-1)0.52619 38549 00464 0.56485 12168 76248| 
(c 5.b5) . 

T = 1, X = 0.08, [ (-2)0.71524 25347 51567, y = 0 

and ry in (12) in an effort to determine the behavior of the weights as functions of those 
parameters. Although the investigation was far from complete, none of the computa- 
tions gave any indication of the existence of a formula using fewer than 14 points. 
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